

IDEAL INDIAN SCHOOL, DOHA-QATAR PERIODIC TEST 1, JUNE 2024 MATHEMATICS

Class: X		Max Marks: 40
Date: 09.06.2024	SET 2	Duration: 2hrs

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has10 MCQs carrying 1 mark each.
- 3. Section B has 2 questions carrying 2 marks each.
- 4. Section C has 4 questions carrying 3 marks each.
- 5. Section D has 2 questions carrying 5 marks each.
- 6. Section E has 1 case based integrated units of assessment (4 marks) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 1question of 5 marks, 1question of 3 marks and 1question of 2 marks has been provided. An internal choice has been provided in the 2 marks question of Section E.
- 8. Draw neat figures wherever required.

	SECTION – A Section A consists of 10 questions of 1mark each.							
S. No								
1	If the equation	n 16x ² +6kx+4	4=0 has equa	l roots, then t	he value of k	is	1	
	(a) ±8	$(b)\pm\frac{8}{3}$		$(c)\pm\frac{3}{8}$	(d) 0			
2	The arithmetic mean and mode of a data are 24 and 12 respectively, then its median is							
	(a) 25	(b) 18		(c) 20	(d) 22	2		
3	If two positive integers a and b are expressible in the form $a = pq^2$ and $b = p^3q$; p, q being prime numbers, then LCM (a, b) is							
	(a) pq (b) p^3q^3 (c) p^3q^2 (d) p^2q^2		$^2q^2$					
4	Three bulbs red, green and yellow flash at intervals of 80 seconds, 90 seconds and 110 seconds. All three flash together at 8:00am. At what time will be three bulbs flash altogether again?							
	(a) 9 am	(b)9:12 am		(c)10am	(d)10:12 am			
5	For the following distribution,							
	Class	0-5	5-10	10-15	15-20	20-25		
	Frequency	10	15	12	20	9		
	The sum of th	e lower limit	s of the medi	an and mode	l class is			
	(a)15	(b)25		(c)30		(d)35		

6	If HCF (26, 169) = 13, then LCM (26, 169) =							
	(a) 26	(b) 52	(c) 338	(d) 13				
7	The HCF and the	he LCM of 12, 21, 15	respectively are		1			
	(a) 3, 140	(b) 12, 420	(c) 3, 420	(d) 420, 3				
8	Statement 1 (A and $18x + 6y$ Statement 2 (F $a_2x+b_2y+c_2=0$ F (a) Statement explanation (b) Statement explanation (c) Statement (d) Statement	Assertion): The system + 24 = 0 have infinite Reason): The system have infinitely many so t 1 and Statement 2 on for Statement 1 t 1 and Statement 1 t 1 is true, Statement t 1 is false, Statement	m of linear equations tely many solutions. of linear equations an solutions, if $\frac{a_1}{a_2} = \frac{b_1}{b_2}$ are true; Statement are true; Statement at 2 is false at 2 is true	9x + 3y + 12 = 0 $x+b_1y+c_1=0 \text{ and}$ $= \frac{c1}{c2}$ 2 is the correct 2 is not a correct	1			
9	9 If the system of equations $kx - 5y = 2$, $6x + 2y = 7$ has no solution, then k=							
	(a) -10	(b)- 5	(c)-6	(d) -15				
10	The quadratic (a) two distinc (c) no real roc	equation $2x^2 - \sqrt{5}x + \frac{1}{5}x$ equation 2x ² - $\sqrt{5}x + \frac{1}{5}x$ equation $\frac{1}{5}x + \frac{1}{5}x + \frac{1}{5$	1 = 0 has (b) two equal re (d) more than 2	eal roots real roots	1			
		SE	CTION – B					
	Section B consists of 2 questions of 2 marks each.							
11	Prove that 2+5	$\sqrt{3}$ is an irrational number of $\sqrt{3}$	mber, given that $\sqrt{3}$ i	s an irrational number.	2			
12	If α and β are t $\frac{1}{\alpha} + \frac{1}{\beta} - 2\alpha\beta$.	he zeros of the polyn	omial $f(x) = x^2 - 5x +$	- 4, find the value of	2			
		OR						
	Frame a quadra	tic polynomial whose	e zeros are $2 + \sqrt{3}$ an	nd $2 - \sqrt{3}$				
		Section C	$\frac{\text{CTION} - C}{64}$					
		Section C consists	of 4 questions of 3 m	arks each.				
13	A train takes 2 5km/hr from its	hours less for a journ s usual speed. Find th	ey of 300 km if its sp e usual speed of the t	beed is increased by train.	3			

	Class	0 - 20	20) - 40	40 - 60	60 - 8	80 8	0 - 100	
	Frequency	7		р	10	9		13	
				OR					
	Find the mo	de of the	followin	g frequen	cy distribu	tion			
	Class	100-120) 12	20-140	140-160	160-1	80 1	80-200	
	Frequency	12		14	8	6		10	
15	Solve for x a 49 x + 51 y	and y : y = 499	and 51	x + 49 y	y = 501				3
16	Find the zero relationship	os of the q between z	uadratic eroes an	polynom nd its coef	tal $2x^2 - 2$	7x + 6, an	d verify t	he	3
				SECTI	ON – D				
		Secti	on D co	nsists of 2	questions	of 5 marl	ks each.		-
17	If the media	n of the d	istributio	on given b	elow is 28	8.5, find th	ne value o	f x and y	5
	Class Interval	0-10	10-20	20-30	30-40	40-50	50-60	Total	
	No. of students	5	Х	20	15	У	5	60	
	and shade the the triangle s The coach of 3 bats and 5	e region b o obtaine f a cricket balls for F	team bu Rs. 1750	DR DR Iys 7 bats . Find the	and 6 balls	-axis. Ho s for Rs. 3 ch bat and	ence find 800. Late ball.	the area of r, he buys	
				SECTI					
	Sec	tion E co	nsists of	SECTI 1 case-sti	ION – E Idv based	auestion (of 4 mark	S	_
19	An asana is a meditation po any type of p balancing po representatio	a body pos ose, and la ose or po ses. In the n of quad	sture ori ater extensition action e figure, ratic pol	ginally an ended in ha lding recli one can o ynomial.	d still a ge ath yoga an ning, stand bserve tha	neral term nd modern ding, inve t poses ca	n for a sitt n yoga as rted ,twis n be relat	ing exercise to ting and ed to	

