

IDEAL INDIAN SCHOOL, DOHA- QATAR ANNUAL EXAMINATION, FEBRUARY 2024 MATHEMATICS (041)

CLASS: IX		Max Marks:80	
Date: 04.02.2024	SET 1	Duration : 3 hours	

General Instructions:

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment (04 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Questions of 5 marks, 2 Questions of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.

			22			
8 Drow	noot figuras	whorever required	Take $\pi - $	whorever re	anirad if not	atotad
o. Diaw	near nguies	wherever required.	Take π	wherever re	quilled if not	stateu.
	\mathcal{O}	1	7		1	

0. N	SECTION – A			
Q.No	Section A consists of 20 questions of 1 mark each.			
1	After rationalising the denominator of $\frac{7}{3\sqrt{3}-2\sqrt{2}}$, we get the denominator as			
	(a) 13 (b) 19 (c) 5 (d) 35			
2	What is the degree of the polynomial $\sqrt{3}$?	1		
	(a) 1 (b) 0 (c) 3 (d) $\frac{1}{2}$			
3	If $a + b + c = 0$, then $a^3 + b^3 + c^3$ is equal to			
	(a) 3abc (b) abc (c) 0 (d) 2 abc			
4	In a parallelogram ABCD, if $\angle A = 2x + 15^{\circ}$, $\angle B = 3x - 25^{\circ}$, then the value of x is	1		
	(a) 91^{0} (b) 89^{0} (c) 34^{0} (d) 38^{0}			
5	The value of $7\sqrt{45} \div 3\sqrt{5}$ is	1		
	(a) 2 (b) $\frac{7}{3}$ (c) 7 (d) $7\sqrt{3}$			

6	In a histogram, wi corresponding cla	hich of the follov ss?	ving is proportional to	o the frequency of the	1
	(a) width of the	rectangle	(b) length of the re	ectangle	
	(c) perimeter of	the rectangle	(d) area of the rec	tangle	
7	Zero of the polyne	omial $P(x) = 2x +$	+ 5 is		1
	(a) $\frac{2}{5}$ (b)	$\frac{-2}{5}$ (c	$) \frac{-5}{2}$ (d)	<u>5</u> 2	
8	The linear equat	$\sin 3x - 2y = 10$	has		1
	(a) unique s	olution	(b) infinitely man	ny solutions	
	(c) no solut	ion	(d) two solution	15	
9	In the given figure	e, if PQ∥RS fi	nd the value of a.		1
			1		
		р	/	0	
		4	D3a-42	Ì ≁	
		2a + 13			
	$R \xrightarrow{S}$				
		1			
	(a) 28 °	(b) 40°	(c) 5 6°	(d) 55°	
	(u) 20	(0) 40	(0) 50	(u) 55	
10	In triangles ABC and PQR , $AB = PQ$ and $\angle B = \angle Q$. The two triangles will be congruent by SAS axiom if				1
	(a) $BC = QR$	(b) $AB = QR$	(c) $AC = PR$	(d) $\angle C = \angle R$	
11	If $P(x) = x^2 - 2y$	$\sqrt{2} x + 1$, then P ($2\sqrt{2}$) is equal to		1
	(a) 0	(b) 1	(c) $4\sqrt{2}$	(d) $8\sqrt{2} + 1$	
12	The angle which is one fourth of its complement is				1
	(a) 15 ⁰	(b) 18^{0}	(c) 45°	(d) 60°	
13	The number of d	limensions, a soli	d has		1
	(a) 3	(b) 0	(c) 1	(d) 2	

14	If the diagonals of a quadrilateral bisect each other at right angles, then the quadrilateral is a		
	(a) rectangle (b) parallelogram (c) trapezium (c	l) rhombus	
15.	The length of a chord AB which is at a distance of 6cm from the centre O of a circle having radius 10cm is		
	(a) 8cm (b) 4cm (c) 16cm (d) 12cm	
16	Which of the following is not a solution of $2x - 3y = 12$?		1
	(a) $(0, -4)$ (b) $(6,0)$ (c) $(2,3)$ (d) (3,-2)	
17	A joker's cap is in the form of a right circular cone of base diameter 14cm and the slant height 25cm, then the area of sheet required to make 2 such caps is		
	(a) $1100cm^2$ (b) $1000cm^2$ (c) $550cm^2$ (d)	5500 <i>cm</i> ²	
18	The slant height of a cone is 13cm and the base radius is 5cm, then the height of the cone is		
	(a) 12cm (b) 8cm (c) 10cm (d)	18cm	
	DIRECTION: In the questions 19 and 20, a statement of asserti followed by a statement of Reason (R)	on (A) is	
	Choose the correct option.		
19	Assertion: In the given figure. $\angle ABC = 70^{\circ}$ and $\angle ACB = 30^{\circ}$. Then,	$\angle BDC = 80^{\circ}.$	1
	Reason : Angles in the same segment of a circle are equal.		
	B $$ \overline		
	(a) Both assertion and reason are true and reason is the correct	t	
	explanation of assertion (b) Both assertion and reason are true and reason is not the correct explanation of assertion		
	(c) Assertion is true but reason is false.		
	(d) Assertion is false but reason is true.		

20	Assertion: The area of an equilateral triangle having side $4\sqrt{3}$ cm is $48cm^2$		
	Reason : The area of an equilateral triangle having each side a is $\frac{\sqrt{3}}{4}a^2$ square units.		
	a) Both assertion and reason are correct and reason is the correct explanation for assertion.		
	b) Both assertion and reason are correct and reason is not the correct explanation for assertion.		
	c) Assertion is true but the reason is false.		
	d) Assertion is false and reason is true.		
	SECTION B		
	Section B consists of 5 questions of 2 marks each		
21	If $x + 1$ is a factor of $ax^3 + x^2 - 2x + 4a - 9$, find the value of <i>a</i> .		
22	If the point $(2k - 1, k)$ is a solution of the equation $10x - 9y = 12$, then find the value of k.		
23	In the given figure, if $AB = BC$ and $BX = BY$. Show that $AX = CY$.	2	
	OR A C		
24	ABCD is a rectangle in which AB \parallel DC. BD is a diagonal and E is the midpoint of AD. A line drawn through E parallel to AB intersecting BC at F. Show that F is the midpoint of BC.	2	
25	The cost of 5 pens is same as the cost of two note books. Express this statement as a linear equation in two variables . OR Express the linear equation $y = 2x + 3$ in the standard form. Find the values of a,b and c .Also find one solution.	2	

	SECTION C	
	Section C consists of 6 questions of 3 marks each	
26	Find the area of a triangle whose sides are 80cm, 48cm, and 64cm. Also find the altitude corresponding to the side of length 64cm. OR The perimeter of a triangular field is 450m and its sides are in the ratio 13:12:5. Find the area of the triangle.	3
27	In the figure given, BM and DN are both perpendiculars to AC and BM = DN. Prove that AC bisects BD. OR	3
	ABCD is a rhombus and P,Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle	
28	Represent $\sqrt{7.5}$ on the number line.	3
29	In the figure, AB CD and a tranversal <i>l</i> cuts AB and CD at A and C respectively. Bisectors of $\angle A$ and $\angle C$ intersect each other at P. Prove that $\angle APC = 90^{\circ}$.	3
30	 A hemispherical dome of a building is to be whitewashed and the total cost of whitewashing the dome is Rs 924 at the rate of Rs 3 per m², then find the (i) inside surface area of the dome, (ii) volume of the air inside the dome. 	3
31	If $a + b + c = 6$ and $a^2 + b^2 + c^2 = 14$, find the value of $ab + bc + ca$.	3

