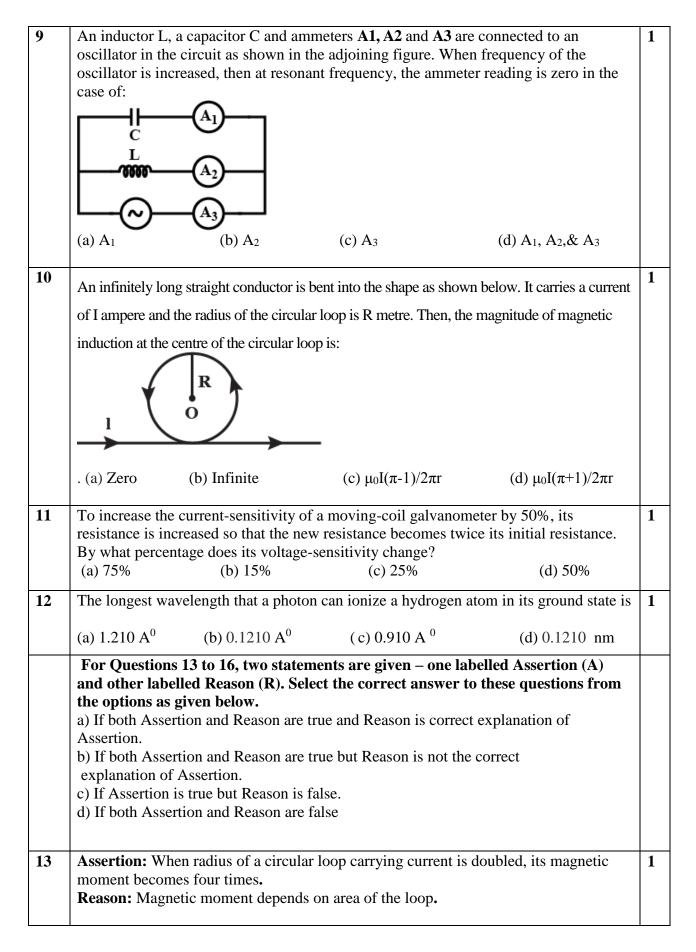
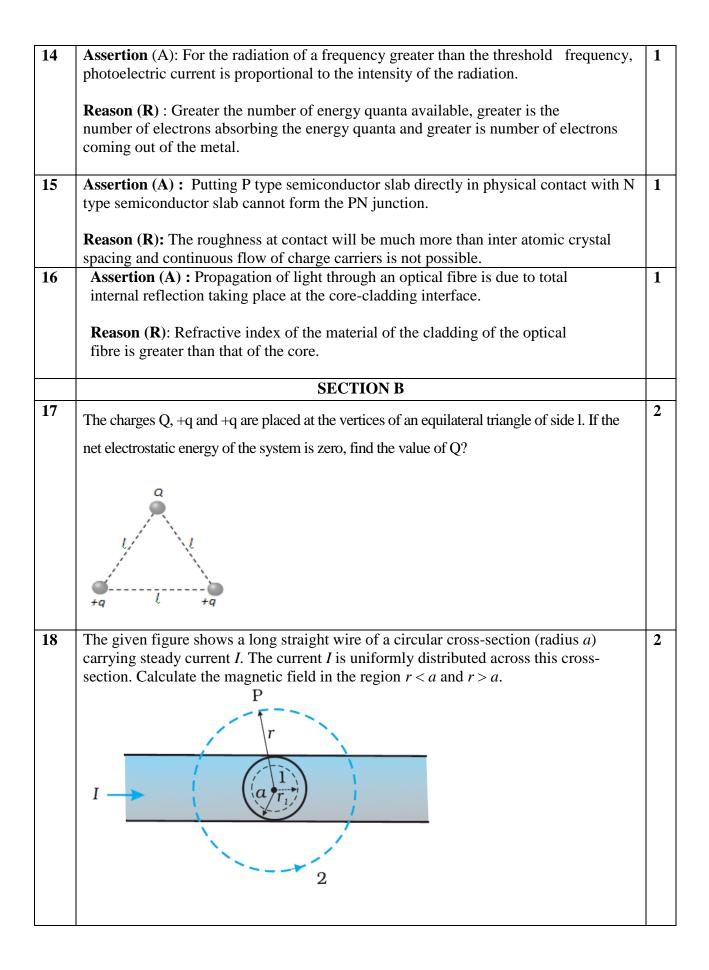
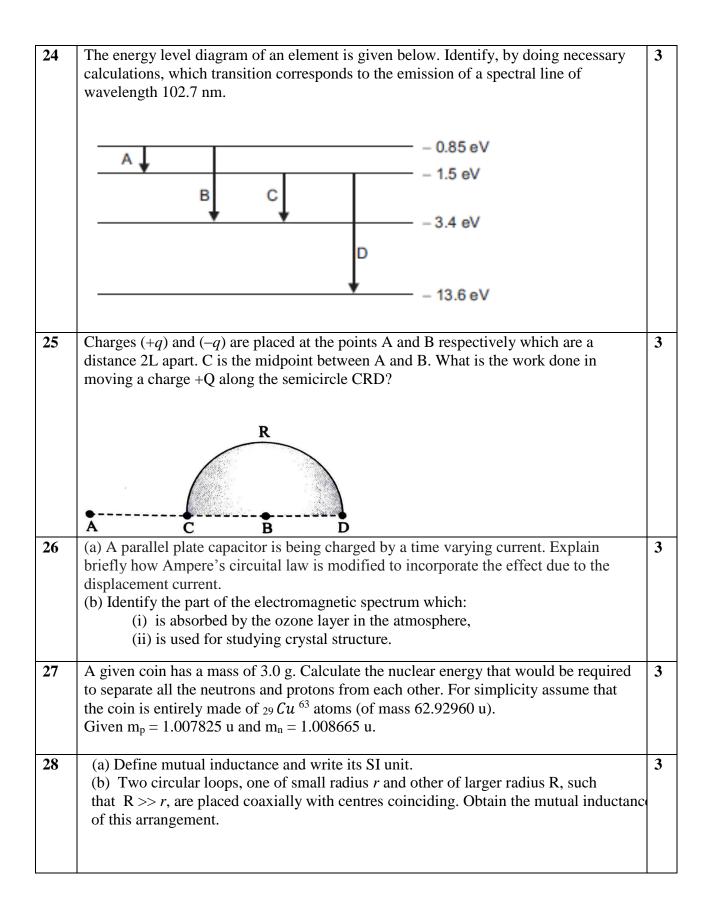


IDEAL INDIAN SCHOOL, DOHA-QATAR PRE BOARD I EXAMINATION, DECEMBER 2023 PHYSICS (042)

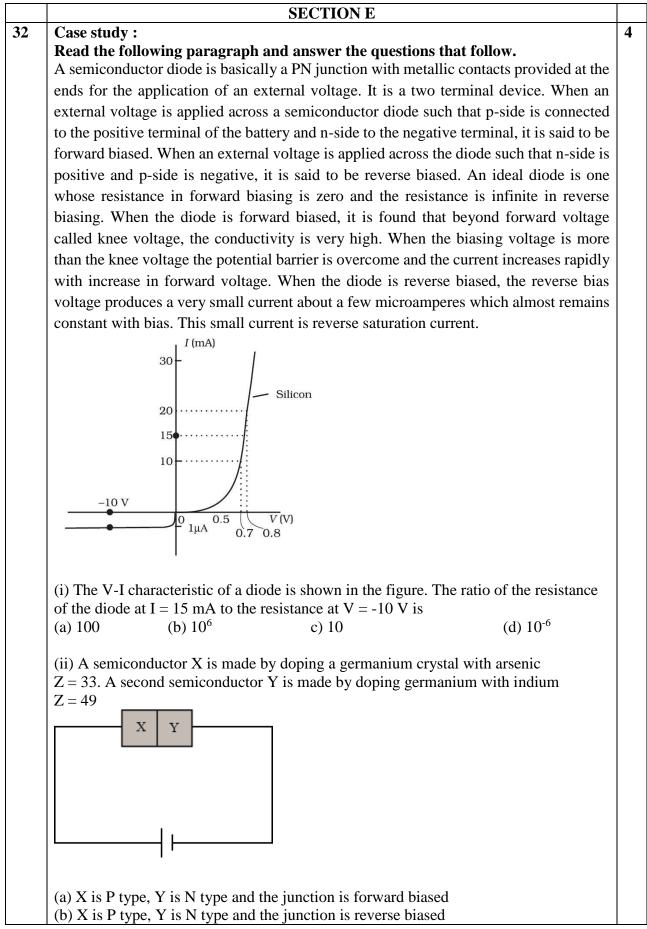

Class: XII		Max Marks: 70
Date: 10.12.2023	SET -1	Duration: 3 hours

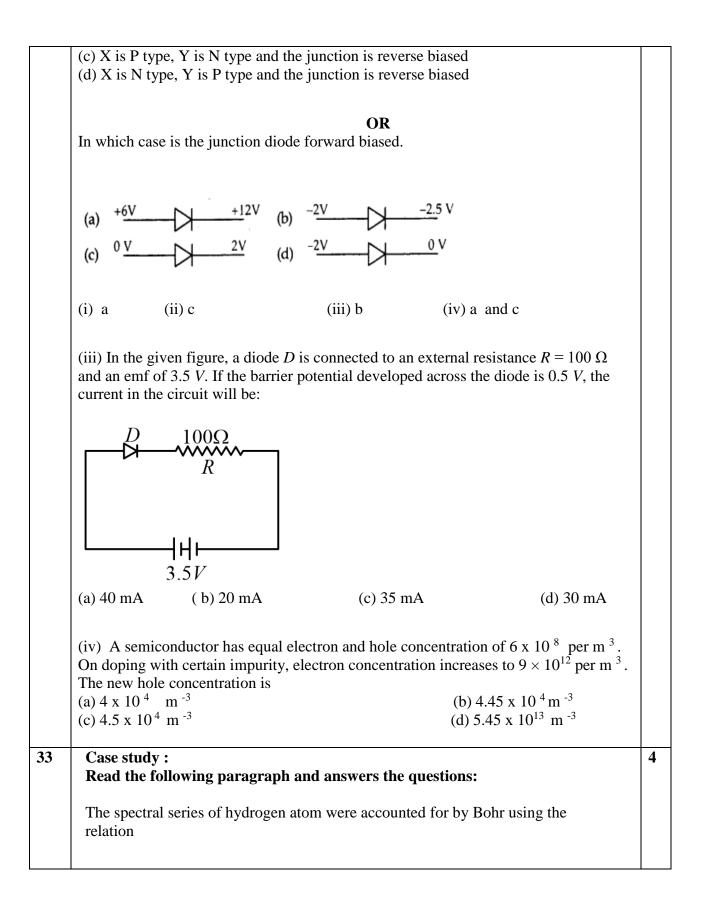

General Instructions:

- There are 33 questions in all. All questions are compulsory.
- This question paper has five sections: Section A, Section B, Section C, Section D and Section E. All the sections are compulsory.
- Section A contains sixteen MCQ of 1 mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, section D contains three long questions of five marks each and Section E contains two case study based questions of 4 marks each.
- There is no overall choice. However, an internal choice has been provided in section B, C,D & E. You have to attempt only one of the choices in such questions.
- Use of calculator is not allowed



3		riation of current with			1
	(a) 200 Wb	(b) 275 Wb	(c) 225 Wb	(d) 250 Wb	
4	-	particle have the same tial of proton to α parti (b) 8:1	de- Broglie wavelength cle is (c) 2:1	. The ratio of their (d) 1:8	1
5	The type of extrin	sic semiconductor ind	licated on the energy bar	nd diagram is:	1
		ction band Acceptor energy lev	/el 		
	(a) N-type	(b) P-type.	(c) PN junction	(d) none	
6		-	wave is E ₀ = 120 N/C a onstant k of the wave is (c) 0.15 m	nd its frequency (d) 1.05 m	1
7	 of substance Y is s (a) X is paramagnet (b) X is diamagnet (c) X and Y both a 	slightly more than unity etic and Y is ferromagnetic and Y is ferromagnetic	netic etic	ess than unity and that	1
	(d) A is diamagne			+	1
8	An infinitely long p charge density λ c n as its center with a c	ositively charged straight n ⁻¹ . An electron is revolv constant velocity in a circ wire. The expression for	ing around the wire ular plane <	+ + + + + e	1





19	The wavelength λ of a photon and the de Broglie wavelength of an electron of mass m have the same value. Show that the energy of the photon is 2λ mc/h times the kinetic energy of the electron, where c and h have their usual meanings.	2
	OR Draw a graph showing the variation of potential energy between a pair of nucleons as a function of their separation. Indicate the regions in which nuclear force is (i) attractive (ii) repulsive. Write two important conclusions which you can draw regarding the nature of the nuclear forces	
20	A ray of monochromatic light passes through an equilateral glass prism in such a way that the angle of incidence is equal to the angle of emergence and each of these angles is 3/4 times the angle of the prism. Determine the angle of deviation and the refractive index of the glass prism.	2
21	When a given photosensitive material is irradiated with light of frequency v, the maximum speed of the emitted photoelectrons equals v_{max} . The square of v_{max} , is observed to vary with v as per the graph shown below. Determine the Planck's constant in terms of m, <i>l</i> , and n?	2
	SECTION C	
22	Derive an expression for the resistivity of a conductor in terms of number density of free electrons and relaxation time. OR A wire of uniform cross-section and resistance 4 ohm is bent in the shape of square ABCD. Point A is connected to a point P on DC by a wire AP of resistance 1 ohm. When a potential difference is applied between A and C, the points B and P are seen to be at the same potential. What is the resistance of the part DP? D	3
23	Three long straight parallel wires are kept as shown in the figure. The wire (3) carries a current I I_1 I_2 I_1 I_2 I_3 I_4 I_5 I_5 I_5 I_6	3

	SECTION D	
29	Define electric flux. Write its SI unit. State Gauss's theorem. Given the components of an electric field as $E_x = \alpha x$, $E_y = 0$ and $E_z = 0$, in which $\alpha = 400$ N/C and side of the cube is 10 cm. If the distance of the left face of the cube from origin is equal to the side of the cube, calculate the electric flux through each face of the cube of side 'a' as shown in the figure and the electric charge inside the cube?	5
	OR (i) A dielectric slab of thickness 't' is kept between the plates of a parallel plate capacitor with plate separation 'd' ($t < d$). Derive the expression for the capacitance of the capacitor. (ii) You are given an air filled parallel plate capacitor C1. The space between its plates is now filled with slabs of dielectric constants K ₁ and K ₂ as shown in C ₂ . Find the capacitances of the capacitor C ₂ if area of the plates is A, distance between the plates is d.	
30	(i) Draw a ray diagram for the formation of image of a point object by a thin double convex lens having radii of curvature R_1 and R_2 . Hence derive lens maker's formula. (ii) A converging lens has a focal length of 10 cm in air. It is made of a material of refractive index 1.6. If it is immersed in a liquid of refractive index 1.3, find its new focal length. (i) Derive the lens formula for a convex lens when virtual image is formed. (ii) Find the position of the image formed by the lens combination given in the figure f = +10 $f = +10$ $f = +$	5
31	Obtain the expression for the average power consumed in a series LCR circuit. And show that the average power consumed in a capacitor and an inductor is zero? Can the voltage drop across the inductor or capacitor in a series LCR circuit be greater than the applied voltage of the ac source? Justify your answer OR Device 'X' is connected to an ac source V = Vo sinot. The variation of voltage, current and power in one cycle is shown in the above graph: Which of the curves A, B and C represent the voltage, current and the power consumed in the circuit .Obtain the expression for the current through 'X'. Draw its graphical representation and phasor diagram. Draw the variation of opposition to the flow of ac with frequency?	5

$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_1^2} \right)$	$\left(\frac{1}{n_2^2}\right)$
where, R=Rydberg constant = 1.097 x when an electron jumps to first orbit fi Balmer series is obtained when an elec subsequent orbit. Paschen series is obt 3^{rd} orbit from any subsequent orbit. W Balmer series is in visible region and I Series limit is obtained when $n_2=\infty$.	rom any subsequent orbit. Similarly, ctron jumps to 2 nd orbit from any ained when an electron jumps to hereas Lyman series in U.V. region,
(i) The wavelength of first spectral lir	ne of Lyman series is
(a) 1215.4 A^0	(b) 1215.4 nm
(c) 1215.4 m	(d) 1215. 4 mm
(ii) The wavelength limit of Lyman se	ries is
(a) 1215.4 A^0	(b) 511.9 A ⁰
(c) 951.6 A^0	(d) 911.6 A^0
(iii) The frequency of first spectral line	e of Balmer series is
(a) $1.097 \times 10^7 \text{ Hz}$	(b) 4.57 x 10 ¹⁴ Hz
(c) $4.57 \times 10^{15} \text{ Hz}$	(d) $4.57 \times 10^{16} \text{ Hz}$
(iv) Which of the following transitions highest frequency?	s in hydrogen atom emit photon of
(a) $n=1$ to $n=2$	(b) n=2 to n=6
(c) $n=6$ to $n=2$	(d) $n=2$ to $n=1$
OR	